
Measuring Student Learning in Introductory Block-

Based Programming: Examining Misconceptions of

Loops, Variables, and Boolean Logic
Shuchi Grover
SRI International

333 Ravenswood Ave. Menlo
Park, CA 94025, USA

shuchi.grover@sri.com

Satabdi Basu
SRI International

333 Ravenswood Ave. Menlo
Park, CA 94025, USA

satabdi.basu@sri.com

ABSTRACT

Programming in block-based environments is a key element of

introductory computer science (CS) curricula in K-12 settings.

Past research conducted in the context of text-based programming

points to several challenges related to novice learners’

understanding of foundational programming constructs such as

variables, loops, and expressions. This research aims to develop

assessment items for measuring student understanding in

introductory CS classrooms in middle school using a principled

approach for assessment design. This paper describes the design

of assessments items that were piloted with 100 6th, 7th, 8th graders

who had completed an introductory programming course using

Scratch. The results and follow-up cognitive thinkalouds indicate

that students are generally unfamiliar with the use of variables,

and harbor misconceptions about them. They also have trouble

with other aspects of introductory programming such as how

loops work, and how the Boolean operators work. These findings

point to the need for pedagogy that combines popular

constructionist activities with those that target conceptual

learning, along with better professional development to support

teachers’ conceptual learning of these foundational constructs.

CCS Concepts
Social and professional topics~Computational thinking • Social

and professional topics~Computer science education • Social and

professional topics~Student assessment • Social and professional

topics~K-12 education • Information systems~Data mining •

Computing methodologies~Semi-supervised learning settings

1. INTRODUCTION
Programming or “coding” is a key element of introductory

computer science curricula in K-12 classrooms in the US. In order

for “CSForAll” to achieve the broader goal of preparing K-12

learners for future studies and careers in CS, students need to be

engaged in early experiences with programming while also

learning the requisite foundational concepts of computational

problem solving. Block-based programming environments such as

Scratch, Alice, Snap!, App Inventor, Blockly are popular vehicles

for introductory programming. They provide a fun and engaging

introduction to concepts without having to deal with syntax that

has historically plagued novice learners of text-based

programming. CS education research over the last four decades

has documented the types of issues that learners struggle with as

they encounter programming concepts [e.g. 3,4,8,11,13,16-21].

Most of these studies were conducted in the context of text-based

programming in CS1 undergraduate coursework. They discussed

conceptual and cognitive difficulties in dealing with the process of

constructing programs, and also challenges posed by specific

programming constructs and control structures such as variables

and other data structures, various types of looping structures,

logical flow using conditionals, and Boolean logic. Although

studies in the 1980s examined the many conceptual challenges for

younger learners working in environments such as LOGO and

BASIC [e.g. 16], few studies since then have looked at learner

misconceptions of introductory computing and algorithmic

concepts, especially in block-based programming environments,

among tween and teen learners in middle school.

This paper reports on research to measure student understanding

of key programming concepts such as variables, expressions using

variables, loops, and Boolean logic. This is part of a larger effort

to design curricular activities that help learners explore these

concepts in engaging ways and have a stronger understanding of

them before they need to use them in programming. Our interest

in these concepts is inspired by our own experiences [8] and prior

literature that points to problems novice programmers face in

introductory programming. The following section presents a

review of relevant literature. Then, we describe our process for

creating assessments to capture student understanding, and the

results of a pilot study with 100 middle school students. We delve

into an analysis of what the results reveal about student

misconceptions regarding the constructs of interest. While some

misconceptions corroborate findings that have been documented

in past studies (albeit being in the new context of middle school

students using block-based programming), some are hitherto

undocumented, to our knowledge. We end with a discussion on

how our results informed revisions to the assessments,

implications of the results for CS pedagogy in K-12 classrooms,

and recommendations for practitioners and curriculum designers

on pedagogies that may be employed to address misconceptions.

2. RELATED WORK
Programming is a complex cognitive activity [16]. There is

extensive past literature in CS education research dedicated to the

various challenges faced by novice programmers in their early

encounters with algorithmic constructs and the complex process

of problem solving involved in programming. Several past studies

examine the cognitive demands of learning programming and the

process of problem solving involved in programming [e.g.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned

by others than ACM must be honored. Abstracting with credit is permitted. To

copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from

Permissions@acm.org.

SIGCSE '17, March 8–11, 2017, Seattle, WA, USA.

© 2017 ACM. ISBN 978-1-4503-4698-6/17/03…$15.00.

DOI: http://dx.doi.org/10.1145/3017680.3017723

267

12,16,21]. These papers focus not so much on learners’ issues

with specific constructs as they do with the problems associated

with the broader understanding of programming—assembling the

constructs sensibly to create a working program.

Others, however, have focused on issues pertaining to specific

programming constructs, and are thus more relevant to this

research. For example, several problems pertaining to the use of

variables, expressions, and loops have been reported [3],

specifically, flawed ideas about variable assignment, variables

being able to assume multiple values at the same time,

distinguishing between what goes inside a loop and what precedes

or follows a loop, and that an expression involving the control

variable of a loop can have different values in each cycle of the

loop. Extensive research on misconceptions related to variables

[20] highlighted the difficulties learners have with initialization of

variables since it is hard for students to make assumptions about

the initial state of a system. Other literature reported students’

difficulties with understanding how and when to terminate loops

[4,18]. Recent research with Scratch also reports that students

struggle with loops, especially ‘repeat-until’ loops that have

terminating conditions involving variables [8]. Novices also have

problems with analyzing and designing mathematical and logical

expressions, naming variables and assigning suitable data types

and structures to these variables and expressions [5]. Further,

students tend to perform worse on the logic-based questions on

the Advanced Placement CS Exam than on any other type of

question on the exam [1]. Problems pertaining to the

understanding of conditionals are often attributed to logical

operators in IF statements [4]. The Boolean AND/OR operators

are often mistakenly interpreted as they are in the English

language. Specifically, students tend to misinterpret the OR

operator as true when one of the operands is true, but not both [9].

Research involving teens using Scratch in informal settings

reported infrequent use of logic and variables in student’s

programs compared to constructs such as conditionals that are

used five times more frequently [11]. This suggests that without

teaching and guidance, teens find it harder to create programs

requiring the use of variables and logic–concepts that we expect

our middle school students to learn. These findings echo those in

[13] with middle school students’ use of Scratch. We are therefore

motivated in our current research to focus on these concepts that

have been shown to be problematic for novices in various settings,

namely variables, expressions (arithmetic and logical), loops and

Boolean logic, and see how we can measure understanding of

these concepts in the context of middle school students who are

learning introductory programming and algorithmic thinking in

block-based programming environments such as Scratch.

3. METHODOLOGY
This research is informed by the broader research question: How

can learning outcomes for computing constructs such as variables,

expressions (arithmetic and logical), and loops, be organized into

a structured assessment framework and measured with technical

quality? A subgoal addressed in this paper : What do assessments

aimed to measure student understanding of computing constructs

such as variables, expressions and loops, tell us about student

understanding and misconceptions related to these concepts in the

context of block-based programming in middle school CS?

3.1 Design of an Assessment Instrument
In order to create measures of student understanding of VEL

concepts, we were guided by Evidence-Centered Design (ECD), a

principled framework for assessment design [14]. ECD enables

assessment developers to work collaboratively with domain and

assessment experts to build artifacts that support task development

with warrantable claims. The ECD process forces thinking about

the claims we want to make about student learning and the

evidence we must gather to support the claims, followed by

designing tasks that elicit such evidence. This methodology has

been used in recent CS education efforts for the development of

assessments for the Exploring Computer Science curriculum [6].

Based on the phases outlined by ECD, we started the process with

a domain analysis that clarified learning goals for middle school

CS and especially the goals concerning VEL concepts. These

learning goals were influenced by earlier work on the FACT

curriculum [7] that was a precursor to this project, as well as the

new K-12 CS framework (k12cs.org) that outlines the need for

learners to understand and use the VEL concepts in grades 6-8. A

key outcome for the domain analysis was to clarify the included

aspects and boundaries of the proposed VEL constructs.

 All constructs begin with “Students will learn…”

 how simple loops work (fixed number of repetitions)

 algorithmic flow of control–how sequence, repetition and

selection works; how instructions are executed in sequence

even when there are loops, except that the set of instructions

within a loop are repeated

 what data is, and how it is used in a program

 how data types define the set of values a variable can have,

and the set of operators that can be used

 how to create, use, assign values to, and update variables

 how variable values change within loops

 what initialization is and why it is important

 using expressions to make new variables from existing ones

 about Boolean variables, operators & expressions

 the idea of controlling loops and conditionals using Boolean

conditions (may/may not involve variables and expressions)

 to identify and articulate patterns in real-world phenomena

and problems, and abstract them into structural components

of a program (pre-loop actions, repeating logic in a loop,

post-loop actions)

 how variables are an abstraction or representation of data in

the program and the real world

In the next step, we developed a “design pattern” or assessment

argument for VEL concepts. This design pattern emphasizes the

definition of the focal knowledge, skills, and abilities (FKSAs)

that are associated with VEL, the task situations in which students

will be observed, and then the observations that would relate to

inferences about students’ learning. Note that while learning goals

are teacher- & curriculum-facing, FKSAs are assessment-facing.

The following are some key FKSAs for our assessment items.

1. Ability to describe what a given loop is doing

2. Ability to describe the sequence that is executed in a given

program when the program contains things inside a loop as

well as outside of the loop.

3. Knowledge that a loop involves a repeating pattern, that will

terminate under a specified condition or after a certain

number of repetitions

4. Ability to identify the repeating pattern within a loop

5. Ability to describe the structural components of a pattern

(not in a programming context).

6. Ability to identify a pattern from a real-world phenomenon

7. Ability to describe how a conditional pathway would operate

8. Ability to create variables, assign values and update variables

9. Ability to describe how a variable changes values in a loop

268

10. Ability to determine what variables are required in a program

to achieve the goals of the computational solution.

11. Ability to evaluate a Boolean expression

12. Ability to use Boolean operators in a programming context

13. Ability to create a Boolean expression for a given condition

14. Ability to identify sub-parts of a computational solution

15. Ability to create a Boolean test to control a loop given

specifications

16. Ability to describe how the Boolean tests interacts with the

loop execution

In the next step, we defined a conceptual assessment framework,

which articulated a blueprint (specification) for the VEL

assessment. We defined key features of the task environment; and

plans for the measurement model— a summative assessment that

would be administered as a pencil-paper test and take no longer

one 50-minute class period. We first designed about twice as

many items as were needed for a pilot assessment. These were

reviewed by experts in the field and reduced to set of 10

assessment items to be piloted. Table 1 describes how each of the

10 items mapped to specific FKSA(s) that were in turn aligned to

the learning goals. Since the FKSAs encompassed real-world and

programming contexts, some of the items were in the context of

Scratch programming while others assessed broader algorithmic

thinking and problem solving skills needed to code in Scratch.

Table 1. Mapping between assessment items and FKSAs assessed

Assessment questions Target FKSAs

Item 1 FKSA 7

Item 2,3 FKSAs 1, 2

Item 4 FKSAs 1, 2, 8, 9

Item 5 FKSA 11 (item with images)

Item 6 FKSA 11 (item with words/text)

Item 7 FKSAs 4, 5

Item 8 FKSAs 5, 6

Item 9 FKSA 12

Item 10 FKSAs 12, 13, 14

We present 4 items (see Figures 1-4) in more detail here as space

constraints allow us to discuss students’ responses to only a few

specific items.

For the program on the left, write

down, in order, what the fox says

after the green flag is clicked.

Figure 1: Assessment Item #2a

3.2 Data Measures
Two middle school CS teachers helped pilot the assessments in

mid-May (at the end of the school year) with a total of 100 6th,

7th, and 8th grade students and provided us anonymous

assessments completed by their students. The students had

completed an introductory programming and CS course using

Scratch that was unrelated to the current project. The goal of the

pilot was to try out the assessment in a real CS classroom setting

and get a sense for the perceived difficulty of items, whether

students had trouble interpreting the questions, and what typical

responses looked like. The teachers were also interested in

potentially using our assessments in the future.

(a) Write down, in order, what will appear on the screen in the fox’s

speech box, after the green flag is clicked.

(b) Does the value of change in the loop?

 Yes No

If Yes, explain how it changes.

(c) Does the value of change in the loop?

 Yes No

If Yes, explain how it changes.

Figure 2: Assessment Item #4

Logical Expression Words

(Starts with a D) AND

(ends with an E)

 DANCE

 DELICIOUS

 SOCCER

 SHARE

(Starts with a D) AND

does NOT (end with an

E)

 DANCE

 DELICIOUS

 SOCCER

 SHARE

(Starts with a D) OR

(ends with an E)

 DANCE

 DELICIOUS

 SOCCER

 SHARE

(Starts with a D) OR

does NOT (end with an

E)

 DANCE

 DELICIOUS

 SOCCER

 SHARE

Figure 3. Assessment Item #6

The teachers completed a two-question survey for each question:

1. In general, how well do you think your students will do on

this question? (3-point Likert scale: A majority of my

students will get this item incorrect; About half of my

students will get this correct; A majority of my students

will get this item correct

2. Below is a list of the learning goals addressed in this

question. Please indicate how well these learning goals were

covered for this class (3-point Likert scale: Not covered (i.e.,

spent no instructional time on this goal); Somewhat covered

(i.e., spent some instructional time on this goal); Fully

covered (i.e., spent a lot of instructional time on this goal).

In order to see if students’ responses generalized to other settings,

and also better understand some of the incorrect responses (that

269

were identical for many students), we then examined students’

responses and misconceptions through cognitive think-alouds with

three students from a minority ethnic group in a summer camp.

We selected students with similar demographic profiles to the

students with whom we had piloted the assessments earlier.

The below pictures shows the different

sections of a shopping receipt. Use

this picture to answer the questions

below:

a. Which sections are identical on

every receipt?______________

b. Which sections are different on

the receipts?_______________

c. Which sections depend on what

input is taken from the customer?

d. If you had to create a program to

print the receipt, what section of

the receipt would you print using

a loop?_______________

Figure 4. Assessment Item #8

4. ANALYSIS & RESULTS
We analyzed the completed assessments from the pilot, teacher

feedback on the assessment items, and students’ responses during

the cognitive think-alouds as they worked on the assessment

items. The 100 completed assessments were coded according to a

rubric. For multiple-choice items, a code was assigned for each

possible response. For open-ended items responses, codes were

generated for correct answers as well as for expected erroneous

responses. Additional codes were added when scoring to capture

some of the frequent incorrect responses to each item. An initial

test set of assessments were graded independently by two

researchers, resulting in refinement of the initial rubric. Once they

consensus was reached, the remaining assessments were divided

between the researchers for grading purposes. In this paper, we

will limit our analysis to assessment items 2a, 4, 6b, and 8

described in Section 3.

Student responses for Item2a were coded as follows:

1. Correct: Let’s start!, Hello, Goodbye, Hello, Goodbye,

Hello, Goodbye, Finished!

2. Missed non-loop: Alternated Hello and Goodbye correctly,

but missed either the beginning Let’s start! or the ending

Finished! or both

3. No Repetition: Let’s start!, Hello, Goodbye, Finished!

4. Grouped: Grouped the Hello’s together and grouped the

Goodbye’s together [Let’s start!, Hello, Hello, Hello,

Goodbye, Goodbye, Goodbye, Finished!]

5. Other: Other incorrect response

6. Missing: Missing response

Table 2 reports student responses for Item 2a in terms of

percentage of student responses corresponding to each code. We

see that a majority of the students answered this item correctly.

However, we notice a new misconception here—when there are

multiple actions inside a loop, instead of executing a sequence

of actions in a loop and then repeating the entire sequence,

some students tend to repeat each action separately before

repeating the subsequent action(s), thus grouping the actions in

the loop. Some student responses that were classified as ‘Other’

also demonstrated the grouping error, although along with other

errors. It is noteworthy that students who demonstrated the

grouping error in Item 2a also demonstrated the error in other

assessments items that are not described in this paper. During the

think-aloud study, we verified this misconception for 1 of the 3

participating students, who explained that the loop construct

works by grouping the actions and repeating each separately.

Table 2. Coded student responses for Item 2a

Correct Missing

non-loop

Grouped No

Repetition

Other Missing

70% 4% 8% 2.5% 10.5% 5%

Most students, even those who understood simple loops and

answered Item 2a correctly, struggled with loops that involved

variables. In Item 4, the number of times the loop must repeat is

specified using a pre-assigned variable. The expression inside the

loop involves two other variables that are initialized outside the

loop. Responses for Item 4a were coded as follows:

1. Correct: Let’s count!, 0, 2, 4, 6, 8, 10, Last Number!, 10

2. Extra Count: All correct but last number is 12 [Let’s

count!, 0, 2, 4, 6, 8, 10, Last Number!, 12]

3. Missing Count: [Let’s count!, 0, 2, 4, 6, 8, Last Number!,

10] OR [Let’s count!, 0, 2, 4, 6, 8, Last Number!, 8]

4. Missing 0: [Let’s count!, 2, 4, 6, 8, 10, Last Number!, 10]

OR [Let’s count!, 2, 4, 6, 8, 10, Last Number!, 12]

5. Other: Other incorrect response

6. Missing: Missing response

Table 3. Coded student responses for Items 4a, 4b, and 4c

Q4a

Correct Extra

count

Missing

count

Missing 0 Other Missing

11.7% 7.8% 3.9% 1.3% 63.6% 11.7%

Q4b

Marked

yes

Marked

no

Marked

nothing

Correct

explanation

Incorrect

explanation

Missing

explanation

62.3% 23.4% 14.3% 33.8% 28.6% 37.6%

Q4c

Marked

yes

Marked

no

Marked

nothing

Included an

explanation

Did not include an

explanation

18.2% 67.5% 14.3% 20.8% 79.2%

Items 4b and 4c were coded based on students’ responses to the

multiple choice questions, and whether students indicated that the

variable ‘Number’ increases by 2 in each cycle of the loop. Table

3 reports how students fared on Items 4a,b,c. We see that very few

students could correctly write the output of the given program

segment. Some students had missing or extra numbers at the

beginning or end of the loop, while several students had

combinations of these errors, or other responses like “Number,

Number, Number, Number, Number” and “0,0,0,0,0,2,4,6,8,10”.

We hypothesized that students’ difficulties with this item

stemmed from a lack of understanding of variables and probable

non-exposure to loop constructs with variables. For items 4b and

4c, we found that only about two-thirds of the students understood

that the value of ‘Number’ changes, while the value of

‘NumberOfTimes’ does not.

Our hypotheses were verified during the cognitive think-alouds.

None of the three students had seen a repeat block in Scratch

without a number. Further, students harbored the

misconception that a variable is a letter that is used as a short

form for an unknown number – an idea that comes from middle

school mathematics classes. Together, this led students to believe

that “repeat(NumberOfTimes)” was a new command. One student

270

conjectured it was a command for multiplication by 5 (the value

of NumberOfTimes), while another thought it would print each

number five times as follows: (0,0,0,0,0,2,2,2,2,2,4,4,4,4,4,…….)

After being told that NumberOfTimes was indeed a variable, the

students could correctly predict the program output, though they

continued to take issue with the length of the variable name.

Due to similar misconceptions, one of the students was of the

opinion that the value of Number does not change while that of

NumberOfTimes does. The “say (Number)” block is present

before and within the loop, but “set (NumberOfTimes)” block is

used outside the loop while “repeat (NumberOfTimes)” is used in

the loop. In addition, students also grappled with the concept of a

variable whose value changed inside a ‘repeat’ control structure.

Students articulated that a loop repeats the same set of actions

and expected loops to produce the exact same output in every

iteration. This misconception was also manifested in student

responses to Item 8d where students were asked to identify which

section of a receipt could be generated using loops. While

students could generally answer other subparts of Item 8 correctly,

less than 4% of the students in the pilot study got Item 8d correct.

During the think-alouds, students opined that none of the sections

of the receipt could be generated using loops since loops are used

to generate the same output in every iteration.

Item 6 assessed students’ understanding of Boolean logic and

required predicting outputs of expressions with Boolean operators.

6b assessed the Boolean OR operator, specifically. Only about

half the students answered this item correctly (Table 4). Also, we

observed in this item and other similar items involving Boolean

operations with picture images that some students mistakenly

think that the OR operator evaluates to true when one of its

operands is true, but not both. This is similar to the use of the

word ‘or’ in the English language, which is effectively closer to

the way the ‘exclusive OR’ or ‘XOR’ operator works.

Table 4. Coded student responses for Item 6b

Correct (OR) AND XOR Other Missing

46.7% 6.5% 6.5% 39% 1.3%

Student performance on the assessment items generally matched

teachers’ perceptions about how students would fare on them. The

teachers believed that majority of their students would get Items 2

and 6 correct since they had spent some instructional time on

helping students understand what a given loop does, the sequence

performed by a program containing things inside as well as

outside a loop, and how to evaluate a Boolean expression.

However, the teachers acknowledged that they had not spent any

instructional time on describing how a variable changes values

within a loop, identifying repeating patterns within a loop,

describing the structural components of a pattern, or identifying a

pattern from a real-world phenomenon, and hence anticipated that

a majority of their students would get Items 4 and 8 incorrect.

5. DISCUSSION
Based on student responses on the pilot study as well as in the

think-alouds, we revised our assessment items, especially those

that were open to misinterpretation. We describe only some key

improvements here. We discarded an item where evaluating

expressions involving Boolean operators depended on

characteristics of objects that could be interpreted variably. For

Q2 we reworded the item so that the actions inside and outside the

loop said different things, while retaining the nub of the question,

as it appears to be valuable in revealing a misconception of how

loops work. We have renamed the variable called ‘Number’ in Q4

to ‘Counter’ and replaced SkipNumber with the number 2. We

have revised Q8a,b,c to provide the 5 options (A/B/C/D/E) along

with a “Mark ALL that apply”. We have removed Q8d. We have

revised Q10 (not discussed here) to include a sub-question that

requires a terminating condition to be constructed using a “repeat-

until” so that we can address additional FKSAs (e.g. FKSA 3, 15,

16)). We have also created a new item to map to FKSA 9 that was

not addressed by the earlier set of assessment items.

Revisions notwithstanding, piloting these assessments aligned to

the learning goals that map to the K-12 CS framework revealed

that there are several aspects related to developing and

understanding of VEL concepts in the context of block-based

environments that need to be consciously taught as part of K-12

CS. Ours was a pilot study in classrooms with a group of well-

meaning teachers who have only recently started teaching CS in

schools that have taken the bold step to adopt CS. The thrust of

this discussion is not to take issue with the particular teachers or

curriculum in these classrooms, but to highlight that students

harbor misconceptions related to relevant CS concepts that they

bring into CS courses and these will impact their CS learning

unless consciously addressed. It is also obvious that though block-

based programming environments such as Scratch have made it

easier for novices to construct programs, several misconceptions

reported in earlier literature still exist as do others that do not

appear to have been reported on before. Students don’t have a

deep understanding of how loops work, what variables are, and

what they do in a programming context. Meaningful use of

variables appears to be rare in middle school students’ programs

and curricula, and students do not encounter loops with variables

and expressions. It is our belief that these topics ought to be

covered in order for students to understand the idea of data

abstraction, and these concepts need to be addressed more deeply

rather than have students move through the grades with

misconceptions and partial understanding of these concepts.

5.1 Implications for Pedagogy
Several prior studies on addressing students’ misconceptions have

focused on the development of a mental model of how the

program is executed by the computer through tracing and/or

visualizations. Though block-based languages such as Scratch

have features such as a variable inspector, learners still struggle

with understanding this key concept. We also believe that since

students don’t have to deal with variables data types in block-

based environments, they end up with an incomplete

understanding of expressions and operators (e.g. the fact that

arithmetic operators make sense only with numbers even though

the variable may be a non-number; or that using “join” with 2

numbers is really concatenating 2 strings (of numbers), are just a

couple of the many issues related to this). The downside of open-

ended constructionist pedagogies underlying Scratch is that they

require focused effort from the teacher or curricular activities to

address these foundational concepts in introductory programming.

CS teacher PD needs to address this, and curriculum designers

must take on the onus of including activities and pedagogies

aimed at better conceptual learning. This resonates with the view

that K-12 CS curricula must balance constructionism with other

pedagogical approaches that foster deeper learning of problem

solving and computing concepts [8,15].

Activities that require students to describe what is happening in

each iteration of the loop (including tracing variable values) will

help them understand how sequences of actions inside loops are

repeated and how to use variables and expressions in the context

of loops. Students must understand the concept of “variation”, that

a variable can take on different values at various points in the

271

execution of the program (but can only hold one value at a time);

that the appropriate range is determined by the context of the

program and the variable “type” (numbers, strings, Boolean); that

the operators on the variables vary by data type; and how the use

of Boolean operators in CS is different from the everyday use of

the terms. Apt naming of variables needs to be encouraged as a

means to build a better understanding of variables [19]. A

meaningful variable name that conveys the variable's function or

role in the program has been shown to simplify the programmer's

task [21]. Lastly, regularly measure student understanding of these

constructs and concepts through formative assessments.

6. CONCLUSION

Middle school students are beginning to get an introduction to CS

and programming. This paper and research invokes decades of

prior research on the difficulties students have in understanding

foundational ideas necessary for conceptualizing and semantically

composing a computational solution. Building on this prior

literature, this research highlights two critical aspects that K-12

CS educators and curriculum designers will benefit from keeping

in mind as they teach or design curricula. The first is that even

though it is syntactically easier to put together programs in block-

based programs, the conceptual difficulties in understanding and

using key building blocks of programs such as variables and loops

still persists, despite efforts by designers of environments like

Scratch to make the environments work with variables, to use

control structures such as loops, create Boolean or arithmetic

expressions, or use Boolean logic to make a true/false

determination of a condition. All these affordances have only

helped learners with the syntactic aspects of programming, and

not the semantic/conceptual (nor strategic) aspects of

programming. In order for learners to understand these concepts,

additional effort and pedagogic strategies are needed. Secondly,

more than ever, this points to a need for formative and summative

assessments designed to measure student understanding, including

misconceptions, and also to refine pedagogy and curricula. This

has been pointed out as an imperative to scaling up CS in K-12 [2,

8, 22]. Our current research involves developing pedagogical

strategies that address these issues and recommendations, as well

as formative and summative assessments. Future work entails

testing the revised assessments with a group of about 300 students

and conducting more robust analyses of item difficulty and

reliability. For CSForAll to succeed, we need to measure

conceptual understanding through various types of assessments

including the kinds described here and also address key barriers to

understanding foundational programming concepts such as

variables and loops and related constructs such as expressions and

Boolean logic.

7. ACKNOWLEDGMENTS
We acknowledge grant support from NSF (Award #1543062).

Thanks to Daisy Rutstein for key contributions in this work, and

to the teachers and students who participated in this pilot study.

8. REFERENCES
[1] Almstrum, V. L. 1999. The propositional logic test as a diagnostic

tool for misconceptions about logical operations. Journal of

Computers in Mathematics and Science Teaching, 18, 205-224.

[2] Cooper, S., Grover, S., Guzdial, M., & Simon, B. (2014). A

Future for Computing Education Research. Communications of

the ACM. 57 (11), 34-36.

[3] duBoulay, B. 1986. Some difficulties of learning to program.

Journal of Educational Computing Research, 2(1), 57-73.

[4] Ebrahimi, A. 1994. Novice programmer errors: Language

constructs and plan composition. International Journal of

Human-Computer Studies, 41(4), 457-480.

[5] Gobil, A. R. M., Shukor, Z., & Mohtar, I. A. 2009. Novice

difficulties in selection structure. In International Conference on

Electrical Engineering and Informatics, 2, 351–356. New Jersey,

USA: IEEE Computer Society.

[6] Goode, J., Chapman, G., Margolis, J. 2012. Beyond Curriculum:

The Exploring Computer Science Program. ACM Inroads. 3(2).

[7] Grover, S., Cooper, S., & Pea, R. 2014. Assessing computational

learning in K-12. In Proceedings of the conference on

Innovation & technology in computer science education. ACM.

[8] Grover, S., Pea, R., Cooper, S. 2015. Designing for Deeper

Learning in a Blended Computer Science Course for Middle

School Students. Computer Sc. Education, 25(2), 199-237

[9] Herman, G. L., Loui, M. C., Kaczmarczyk, L., & Zilles, C. 2012.

Describing the what and why of students’ difficulties in boolean

logic. ACM Transactions on Computing Education), 12(1), 3.

[10] Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. 2005. A study of

the difficulties of novice programmers. ACM SIGCSE Bulletin,

37(3), 14-18.

[11] Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M. and Rusk, N.

2008. Programming by choice: Urban youth learning

programming with Scratch. ACM SIGCSE Bulletin, 40, 1.

[12] Mayer, R.E. (1989). The psychology of how novices learn

computer programming. In E. Soloway & J.C. Spohrer (Eds.),

Studying the novice programmer (pp. 129–159).

[13] Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. 2011. Habits

of programming in Scratch. In Proceedings of the 16th annual

joint conference on Innovation and technology in computer

science education (pp. 168-172). ACM.

[14] Mislevy, R., Steinberg, L, & Almond, R. 2003. Focus article: On

the structure of educational assessments. Measurement:

Interdisciplinary research and perspectives, 1(1), 3-62.

[15] Passey, D. (2016). Computer science (CS) in the compulsory

education curriculum: Implications for future

research. Education and Information Technologies, 1

[16] Pea, R., & Kurland, D. 1984. On the cognitive effects of learning

computer programming. New Ideas In Psychology, 2, 137–168.

[17] Postner, L. “Computer science education research on

programming: What we know and how we know it”, Technical

Report. Online. Internet. [August, 2001]. Available WWW:

http://depts.washington.edu/pettt/papers/

[18] Robins, A., Rountree, J., & Rountree, N. 2003. Learning and

teaching programming: A review and discussion. Computer

Science Education, 13(2), 137-172.

[19] Samurcay, R. 1989. The concept of variable in programming: Its

meaning and use in problem-solving by novice programmers. In

E. Soloway and J. C. Spohrer, editors, Studying the Novice

Programmer, po. 161–178. Lawrence Erlbaum Associates, NJ.

[20] Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic

interactions in programmer behavior: A model and experimental

results. Intl. Journal of Comp & Info. Sciences, 8(3), 219-238.

[21] Spohrer, J. C., & Soloway, E. 1986. Novice mistakes: Are the

folk wisdoms correct?. Communications of the ACM, 29(7).

[22] Yadav, A., Burkhart, D., Moix, D., Snow, E., Bandaru, P., &

Clayborn, L. 2015. Sowing the Seeds: A Landscape Study on

Assessment in Secondary Computer Science Education. Comp.

Sci. Teachers Assn., NY, NY.

272

